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Zero-Temperature Dynamics of Ising Models on the
Triangular Lattice
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We consider the nature of spin flips of zero-temperature dynamics for ferromag-
netic Ising models on the triangular lattice with nearest-neighbor interactions and
an initial configuration chosen from a symmetric Bernoulli distribution. We prove
that all spins flip infinitely many times for almost every realization of the dynamics
and initial configuration.

KEY WORDS: Ising models; triangular lattice; spin flips.

1. INTRODUCTION

Let ¥ =(E,,V,) be an infinite graph with edge set E, and vertex set V.
Consider the stochastic process ¢’ = {o’, x €V} on ¢ which corresponds
to the zero-temperature limit of Glauber dynamics for the Ising model with
Hamiltonian

H=-— Z J. ,0:0,,

X, y:x~y

where x ~ y denotes that x and y are nearest neighbors, i.e., {x, y} € Ey.
The process o' takes values in 2 = {—1, +1}"7, the space of spin configu-
rations. The initial value ¢°= {6, xeV,} is taken from a symmetric
Bernoulli product measure, i.e., for each x e V,, ¢° takes +1 (or —1) with
probability 1/2, independently for different vertex. At each x, there is a
“Poisson clock™ (with rate 1) which “rings™ at random times independently
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between different vertices. When the Poisson clock rings at time ¢, the spin
at x will consider to flip (i.e., 6°"° = —¢'~%). If the change in energy

X

AH. (0)=2 ) J. ,0.0,

yiy~x

(where o = ¢'7°) is negative (or positive), then the spin at x flips (or does
not flip) with probability 1. If AH (¢) =0, then a fair coin is tossed to
determine if the spin at x flips. We denote by P, the probability distribution
on the times at which the Poisson clock rings along with the fair coin
tosses, and by Py, , = P,ox P, the joint distribution of the independent
o’ and 7.

We are interested in whether for almost every ¢” and 7 (i.e., P,o, . -almost
surely), 0°(¢°, 7) = lim, , , ¢'(c°, 7) exists, that is, whether for every x e V,
o%(c° 1) flips only finitely many times. If J, ,’s are independent random
variables and ¢ = {J, ,, {x, y} € E,} is chosen from the product measure
P, of a continuously distributed probability measure on the real line, then
it is proved in ref. 2, under very mild conditions, that for almost every Z,
c°, and 1, o'(= ¢'(¢°, 7)) flips only finitely many times for every x € V,, for
a very general class of infinite graphs, including the hypercubic lattice Z¢,
the hexagonal and triangular lattice, homogeneous trees, etc. On the other
hand, if J, ,=+1 (or a positive constant) for all {x, y} € E,, then the
picture is less complete. In this case it is proved in ref. 2 that (1) ¢’ flips
infinitely many times for almost every ¢° and 7 and for every x eV, if
4 =Z or Z* and (2) ¢’ flips only finitely many times for almost every ¢°
and 7 and for every x eV, if ¢ is a transitive graph in which each vertex
has an odd number of nearest neighbors, e.g., the hexagonal lattice and
homogeneous trees of odd degrees. See also ref. 1 for the model on the
homogeneous tree of degree three. In this note, we consider the model on
the triangular lattice and prove the following theorem.

Theorem 1. Let ¢ be the triangular lattice and J, , = +1 for all
{x, y} € E4. Then for almost every ¢° and 7 and for every x €V, o’ flips
infinitely many times.

The idea of the proof of the theorem is from that of Theorem 2 in
ref. 2. The key in the proof is the translation ergodicity along the three lines
passing through each vertex. It is unknown if ¢’ flips infinitely many times
or only finitely many times when % is Z“ with d > 3, or a homogeneous
tree of even degrees, or a hyperbolic graph (see ref. 3 for a definition) in
which each vertex has an even number of nearest neighbors.
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2. PROOF OF THE THEOREM

First of all, since the distributions P, and P,o are translation-invariant,
so is the product distribution P, ,0 = P, x P,o. For a given vertex x, let A7
(or A7) be the event that ¢¥(r, ¢°) exists and equals +1 (or —1), and
denote by I} (or I) the indicate function of this event. By translation-
invariance and symmetry under the global spin flip ¢° - —¢°, it follows
that for all x, P, ,0(A})=P, ,0(A;) = p for some p [0, 1/2]. We wish to
prove that p =0.

Suppose p > 0. Fix a vertex a in the lattice. By translation-ergodicity, for
each of the three lines passing through a there are, with P, ,o-probability one,
infinitely many vertices x on each side of a such that A, occurs. This implies
that there exists vertices b, d and f on the three lines passing through a as
shown in Fig. 1 such that

P o(AfA, A;A7)>0.

So there exists some #, such that, with strictly positive P, ,o-probability,
o,=+1 and g, =0;=0"=—1 for all t>¢, But this would at least
require that the transition probabilities of the Markov process ¢’ satisfies

inf P(c"*'¢ Q' |o'=0)=0,

ocef

where Q' is the set of spin configurations on the triangular lattice such that
o,=+1 and 0, =0, =0, =—1. Next, we will reach a contradiction by
showing

inf P.(c"*'¢ Q' |o'=0)>0. @.1)
oceQ

This will prove that p = 0.

Let R be the finite region enclosed in the polygon “‘abcdef.” More
precisely, R is the set of vertices inside (and on the boundary of) the
polygon abcdef. Let Q; = {—1, +1}® be the set of spin configurations in R
and Q% be the subset of Q; with ¢, =+1 and 0, =0, =0, = —1. Because
there are only finitely many elements in Q%, in order to show (2.1) it is suf-
ficient to show that for each o, € Q%

P (0" ¢ Q' |o'|x=0%) >0, 22

where o |, is o restricted on R.
For any o’ € 2%, we call a Peierls contour (in the dual lattice) which
separates plus and minus spins in R a domain wall. We claim that for any
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Fig. 1.

o'y € Q%, there exists a domain wall which either (1) starts from line segment
af and ends on line segment ab, or (2) starts from line segment ab and ends
on line segment bc, or (3) starts from line segment ad and ends on line
segment cd, or (4) starts from line segment ad and ends on line segment de,
or else (5) starts from line segment af and ends on line segment ef. To
prove the claim, first notice that the spins at vertices a and f are respec-
tively +1 and —1. So along the line segment from a to f, there exists the
first vertex at which the spin is —1. Call this vertex i; and the vertex right
before it i; —1. Then there is a domain wall starting at the midpoint
between vertices i, —1 and i,. If this domain wall comes back to line
segment af and ends at the midpoint between some i, —1 and i,, then the
spin at i, must be + 1. Call the first vertex after i, which has spin —1 as i,.
Then there is a domain wall starting at the midpoint between i; — 1 and i5.
If this domain wall ends on line segment af again, then repeat the proce-
dure. Eventually, we can find the first (counting from vertex a to vertex f')
domain wall which starts on line segment af and ends on either line
segment ab or bc or cd or de or ef. If it ends on line segment ab or ef, then
the proof is finished. If it ends on line segment bc, then it cuts region R into
two parts: R,, the part which contains vertex b, and R— R,. Notice that the
spins on the boundary of R, along this domain wall are all +1, so any
other domain wall in R, can not intersect this domain wall. Find the first
domain wall (counting from vertex b to vertex a) which starts from line
segment ba and does not end on ba. Then this domain wall must end on b¢
because it can not end on af, since if it ends on af, then the domain wall
which starts from af and ends on bc would not be the first one not ending
on af (counting from vertex a to vertex f). Therefore, there exists a
domain wall which starts on line segment ab and ends on line segment bc.
If the domain wall starting on line segment af ends on line segment cd,
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then it crosses ad and hence there is a domain wall which starts on ad and
ends on cd. Finally if the domain wall starting on af ends on de, then it
cuts the parallelogram “adef” into two parts: R,, the part which contains
vertex d, and the rest of the diamond. Because of the way the domain wall
is chosen, in R, the vertex d is surrounded by +1 spins, ranging from
vertex a to the beginning of the domain wall and then along the domain
wall to the end of the domain wall on line segment de. So there must be a
domain wall starting on line segment ad and ending on line segment de.
This completes the proof of the claim.

We now turn to the proof of (2.2). Without loss of generality, suppose
there exists a domain wall which starts on line segment af and ends on line
segment ab (see Fig. 1). The other four cases listed in the claim can be
argued similarly. This domain wall cuts R into two parts: R,, the part
which contains vertex a, and R— R,. We first give an order to the vertices
in R, according to the following rule: order the vertex which is farthest
from line af first; if two or more vertices have the same distance from line
af, then order the one which is farthest from line ab first. Then with posi-
tive P.-probability there is some sequence of clock rings (according to the
order prescribed above) and coin toss outcomes within R that will move the
domain wall towards vertex a so that ¢’*' = —1. For example, in Fig. 1,
the clocks rings in the order of 1, 2, 3, 4, 5, 6, 9. After the clock at 4 rings,
the domain wall encloses only vertices 5, 6, and 9. From here it is further
moved towards vertex a and finally the spin at a is changed from +1 to
—1. This completes the proof of the theorem. []
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